Elliptic Calogero-Moser Systems and Isomonodromic Deformations

نویسنده

  • Kanehisa Takasaki
چکیده

“A`−1” stands for the A`−1 root system that underlies this model. Similarly, an elliptic Calogero-Moser system can be defined for each irreducible (but not necessary reduced) root system. Furthermore, for non-simply laced root systems, a kind of variants called “twisted model” and “extended twisted models” are also known. Those elliptic Calogero-Moser systems are known to possess an isospectral Lax pair L(z) and M(z). z is an “elliptic spectral parameter”, i.e., a parameter that lives on the torus Eτ = C/(Z+ τZ). The equations of motion can be written in the Lax form

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric construction of elliptic integrable systems and N = 1∗ superpotentials

We show how the elliptic Calogero-Moser integrable systems arise from a symplectic quotient construction, generalising the construction for AN−1 by Gorsky and Nekrasov to other algebras. This clarifies the role of (twisted) affine Kac-Moody algebras in elliptic Calogero-Moser systems and allows for a natural geometric construction of Lax operators for these systems. We elaborate on the connecti...

متن کامل

Geometric Construction of Elliptic Integrable Systems and N = 1

We show how the elliptic Calogero-Moser integrable systems arise from a symplectic quotient construction, generalising the construction for AN−1 by Gorsky and Nekrasov to other algebras. This clarifies the role of (twisted) affine Kac-Moody algebras in elliptic CalogeroMoser systems and allows for a natural geometric construction of Lax operators for these systems. We elaborate on the connectio...

متن کامل

Non-Laplacian growth, algebraic domains and finite reflection groups

Dynamics of planar domains with multiply connected moving boundaries driven by the gradient of a scalar field that satisfies an elliptic PDE is studied. We consider the question: For which kind of PDEs the domains are algebraic, provided the field has singularities at a finite number of fixed points? The construction reveals a direct connection with the theory of the Calogero-Moser systems rela...

متن کامل

Algebraic spectral relations for elliptic quantum Calogero–Moser problems

Explicit algebraic relations between the quantum integrals of the elliptic Calogero–Moser quantum problems related to the root systems A2 and B2 are found.

متن کامل

ar X iv : m at h / 02 12 02 9 v 2 [ m at h . Q A ] 1 3 Fe b 20 03 GENERALIZED LAMÉ OPERATORS

We introduce a class of multidimensional Schrödinger operators with elliptic potential which generalize the classical Lamé operator to higher dimensions. One natural example is the Calogero–Moser operator, others are related to the root systems and their deformations. We conjecture that these operators are algebraically integrable, which is a proper generalization of the finite-gap property of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999